Leveraging multimodal content for podcast summarization

Published in ACM SAC 2022, 2022

Recommended citation: https://doi.org/10.1145/3404835.3462954

Podcasts are becoming an increasingly popular way to share streaming audio content.Podcast summarization aims at improving the accessibility of podcast content by automatically generating a concise summary consisting of text/audio extracts. Existing approaches either extract short audio snippets by means of speech summarization techniques or produce abstractive summaries of the speech transcription disregarding the podcast audio. To leverage the multimodal information hidden in podcast episodes we propose an end-to-end architecture for extractive summarization that encodes both acoustic and textual contents. It learns how to attend relevant multimodal features using an ad hoc, deep feature fusion network. The experimental results achieved on a real benchmark dataset show the benefits of integrating audio encodings into the extractive summarization process. The quality of the generated summaries is superior to those achieved by existing extractive methods.

Project repository on GitHub

Recommended citation: coming soon